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Abstract 

A quantitative  expression key to  evaluating  significant  structural  differences  or  induced  shifts between any  two 
protein  structures is derived. Because crystallography leads to  reports  of  a single (or  sometimes  dual)  position  for 
each  atom,  the significance of  any  structural  change based on  comparison  of  two  structures  depends critically on 
knowing the expected  precision  of each  median  atomic position reported,  and  on  extracting it for each atom,  from 
the  information  provided in the  Protein  Data Bank and in the  publication.  The  differences between structures 
of protein molecules that  should be identical,  and  that  are  normally  distributed,  indicating  that they are  not  af- 
fected by crystal  contacts, were analyzed with respect to  many  potential  indicators  of  structure  precision, so as 
to extract, essentially by “machine  learning”  principles,  a generally applicable  expression involving the highest 
correlates.  Eighteen  refined  crystal  structures  from  the  Protein  Data  Bank, in which there  are  multiple molecules 
in  the  crystallographic  asymmetric  unit, were selected and  compared.  The  thermal E factor,  the  connectivity of 
the  atom,  and  the  ratio of the  number of reflections to  the  number of atoms used in  refinement correlate best with 
the  magnitude of the  positional  differences between regions of the  structures  that  otherwise  would  be expected 
to be the  same.  These results are  embodied in a  six-parameter  equation  that  can be applied  to  any  crystallograph- 
ically refined  structure  to  estimate  the expected uncertainty in position of each  atom.  Structure  change in a mac- 
romolecule can thus be referenced to the expected uncertainty in atomic position  as reflected in the variance between 
otherwise  identical  structures with the  observed values of correlated  parameters. 
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Abbreviations: Ax, Ay, Az, difference  in  position of a  single atom 
between a  pair of structures  along  the x ,  y ,  or z axis, respectively; x. gen- 
eralized  one-dimensional  axis  that  represents  the  average  over all pos- 
sible  orientations; u y ,  standard  deviation in one  dimension of the 
Gaussian  portion  of  positional  differences between a  pair of structures; 
Ar, the  difference  distance  in  position between atoms in different struc- 
tures -.&x2 + Ay2 + A z 2 ;  ur, standard  deviation of the Maxwellian dis- 
tribution  of  positional  differences in a  pair of structures: ur = &,; 
A<I{, distance  between  the  observed  position of an  atom  and its ‘‘true’’ 
position; ut,{, standard  deviation  of  the Maxwellian distribution of A r t :  
u , , ~  = (n/2)u,; ATOM,  number  of  independently  refined  atom  posi- 
tions  in  the  asymmetric  unit;  REFL,  number of independent  reflections 
used in refinement;  t,(B,ATOM/REFL),  empirically  derived  estimate 
of ux as  a  function of B factor  and  the  ratio  of  ATOMIREFL  for  a 
given structure;  N.E.S.(subset),  normalized  error  score,  defined  as  the 
deviation  from  t,(B,ATOM/REFL)  for  a  selected  subset  of  atoms; 
N.E.S.,(subset),  normalized  error  score  calculated using only  structure 
i of  the 18 structures  used in the  analysis;  uNps(subset),  standard  devi- 
ation of the 18 values for  N.E.S.,(subset). 

~~ ~ 

Structural differences between macromolecules  can best be evalu- 
ated  as  to significance by reference  to  the expected distribution 
of  uncertainty,  or  positional  variations in regions that  are  com- 
pared.  Such  variations  differ widely for different regions of pro- 
tein structure, as reflected in  electron  density maps  and deduced 
thermal factors,  and depend on connectivity of  the atom  and  ap- 
plied constraints, resolution  of the analysis, number of observa- 
tions,  and  method of refinement  and  other  factors.  Structures 
determined by NMR are  often  represented  as  a  manifold  that 
are  consistent with the  data  because  the  errors in closely cou- 
pled distances and angles are cumulative for regions of  sequence 
that  are  separated by longer  through-bond  distances.  Here we 
focus  on  structures of proteins  as  determined by X-ray  crystal- 
lography. We derive a readily accessible calculation that best pre- 
dicts  the expected positional  uncertainty for any  atom in any 
particular  protein  structure  determination,  from  the  informa- 
tion on  the refined structure readily available in the Protein  Data 
Bank format, or from  publications of the  structure  analysis. 

There is information  that directly pertains  to  positional vari- 
ance in the  course of  crystallographic refinement,  the resolution 
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of  the  structure,  the  constraints  used,  and  other  factors.  Such 
variances  can  be  estimated  directly  from  the  gradient  and  cur- 
vature in electron  density  maps  (Chambers & Stroud, 1977), 
however,  these are  not readily  restored from  information depos- 
ited in the  Protein  Data  Bank. Because various  constraints toward 
ideality of  geometry  may  be  applied  during  the  crystallographic 
analysis,  positional  deviations  may  be  further  reduced  from 
these  values as  they  would be determined  for  unconstrained  at- 
oms.  To  identify  the  most  significant  relationships  among  the 
more  readily  available  descriptors, we compare  structures  that 
should otherwise be the  same within the limitations of the  meth- 
ods used to  determine  their  structures,  and  extract  an  empiri- 
cal relationship  that relates  these  differences in position to  those 
most relevant factors necessary to  produce  an  estimate of un- 
certainty. To  obtain statistics, we identified  structures within the 
Protein  Data Bank that  are expected to be identical  and  com- 
pared  them with respect to  a variety of possible parameters  that 
might be expected  to reflect inherent flexibility, or uncertainty 
of different  sites.  There  are several  cases  of structures  deter- 
mined by more  than  one  group  (Chambers & Stroud, 1979; 
Clore & Gronenborn, 1991) or  in  different  crystal  forms (Kos- 
siakoff et al., 1992). These  show  a  relationship between differ- 
ences  in structure  and  the  reported  resolution,  and  thermal B 
factors  (Chambers & Stroud, 1979). Differences between closely 
related  protein  structures  also  have been analyzed  to  extract 
probable  errors  (Chothia & Lesk, 1986). Here we derive a  more 
general  expression  from  multiple  comparisons  that  can be ap- 
plied to  many  structures. 

Crystal  structures  that have more  than  one molecule indepen- 
dently  arranged in the  asymmetric unit represent  a  particularly 
rich source  of  information  on  accuracy  and plasticity in crys- 

Table 1. Structures  used in the  analysis 
~~ 

~ ~~ 

~~~~~~ 

~ ~~~~ 

PDB 
codeh 

lTHB 
2CCY 
4CHA 
4DFR 
ZHHB 
3CYT 
ZAZA 
lGDl  
1 AZA 
lGPI  
1 HMQ 
2PKA 
2PFK 
1 FCB 
4MDH 
4ATC 
lFCl  
1 HBS 

~ ~ ~~~~ 

~~ 

~ 

~ 

~~~ ~ ~ ~ ~ _ _ _ ~ ~ ~ ~  ~~ ~ 

~~~ 

R 
Resolution  factor 

Name of protein (A) (070) 

T  state of hemoglobin 1.50  19.6 
Cytochrome c' I .67  18.8 
cy-Chymotrypsin 1.68  23.4 
Dihydrofolate  reductase I .70  15.5 
Deoxy-hemoglobin I .74  16.0 
Tuna  cytochrome c (oxidized) I .80  20.8 
Azurin I .80 15.7 
Glyceraldehyde  3P  dehydrogenase 1.80 17.7 
Azurin 2.00  19.0 
Glutathione  peroxidase 2.00  18.6 
Hemerythrin 2.00  17.3 
Kallikrein  A 2.05  22.0 
Phosphofructo-kinase 2.40  16.8 
FlavocytochromeB2 2.40  18.8 
Malate  dehydrogenase 2.50 16.7 
Aspartate  transcarbamylase 2.60  24.0 
Immunoglobulin IGG 2.90  22.0 
Deoxyhemoglobin S 3.00 25.4 

~ ~~ ~ ~ ~~~~~~ 
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tallography  because,  within  each  structure,  variables  such  as 
crystallizing conditions,  primary  sequence,  crystal  habit,  data 
collection strategy,  resolution of the intensities, and  refinement 
methodology  are  the  same  for  both molecules. We compare 18 
pairs  of  structures  with  multiple,  independently  refined mol- 
ecules  in the  asymmetric  unit  (Table l ) .  The  differences in the 
structures were parameterized first  with  respect to B factor.  Af- 
ter testing a number  of  potential indices of  model  quality for cor- 
relation with errors, a factor  containing  the  ratio  of  parameters 
to  observations used  in the  refinement was found  to  correlate 
best with the observed  differences in position. The empirical for- 
mula  can be applied  to  any  refined  macromolecular  structure 
to  obtain  an  estimate  for  the expected  precision  of each  atom 
position.  These  variations will include  the  errors in each set of 
coordinates  and expected  plastic accommodations within the 
core regions of covalently identical  protein molecules. The  ef- 
fect of other  atomic  attributes were evaluated  for their  relation- 
ship  to  positional  differences  and  an  overall  equation  was 
derived that allows a  quantitative  estimation of the  uncertainty 
in position of any  atomic  position listed in the  Protein  Data 
Bank. 

Results 

Deriving  the  empirical error  curve, eX(B) 

Eliminating  true  structural differences 
in extracting  errors 
There  are real differences between multiple molecules  in the 

asymmetric unit due  to  differences  in  the  packing  environment 

~ ~~ 

No. mol. in 
asym.  unit 

2 
2 
2 
2 
2 
2 
2 
4 
2 
2 
4 
2 
4 
2 
2 
2 
2 
4 

~~ ~~ 

~~~~ . ~~ 

No.  indep. 
reflect. 

87,000 
30,533 
35,274 
32,554 
56,287 
16,831 
21,980 
93,120 
15,614 
26,564 
40,422 
35,500 
59,481 
61,365 
22,910 
26,912 
10,342 
17,662 

__ __ 

~~ 

No. atoms in 
asym.  unit 

4,874 
2,146 
3,591 
3,04 1 
4,779 
1,743 
2,263 

10,984 
2,133 
3,102 
4,296 
3,456 
9,371 
6,948 
5,675 
7,620 
3,182 
9,104 

~~~~ 

~" "_ 

~ ~ 

REFL/ATOM 

17.8 
14.2 
9.8 

10.7 
11.8 
9.7 
9.7 
8.5 
7.3 
8.6 
9.4 

10.3 
6.3 
8.8 
4.0 
3.5 
3.3 
1.9 

__ ~ 

"The  four-letter  code  refers  to  the  PDB  designation  for  each  structure,  for which the  references  are: lTHB (Waller & Liddington, 1990); 2CCY 
(Finzel  et  al., 1985); 4CHA  (Tsukada & Blow, 1985); 4DFR  (Bolin  et  al., 1982); ZHHB  (Fermi  et  al., 1984); 3CYT  (Takano & Dickerson, 1980); 
ZAZA  (Baker, 1988); l G D l  (Skarzynski  et  al., 1987); lAZA  (Norris et al., 1983); lGPl   (Epp et al., 1983); 1HMQ  (Stenkamp  et  al., 1982); 2pKA 
(Bodeetal . ,  1983);  2PFK  (Rypniewski  Evans, 1989); 1FCB  (Xia & Mathews, 1990); 4MDH  (Birktoft  et  al.,  1989);  4ATc  (Ke  et  al., 1984); ~ F C I  
(Deisenhofer, 1981); IHBS  (Padlan & Love, 1985). 
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of  the  independent molecules. To examine differences that have 
random  distribution, all those  differences  that followed a nor- 
mal or Gaussian  distribution were extracted.  The  normally dis- 
tributed  differences  between  these  pairs  of  structures  are 
regarded  here  as  due  to  the  random  errors in the  structures. 
Crystal  contacts  and  other  systematic  differences were screened 
by fitting a Gaussian  to  the  observed  distribution  of  one- 
dimensional  differences. 

In the  first  step,  each  structure  was  examined  for  any possi- 
ble dependence  of  errors  upon B factors. In each structure com- 
parison, a scatter  plot was constructed  of Ar (the  difference in 
atomic  position in the  pair  of  structures) versus the  mean B fac- 
tor assigned to  the  atom in the  two  structures  (Fig. I) .  Running 
bins in B factor were constructed with a width of +2 A' and  an 
increment  of 0.1 A'. The  distribution  of Ar values  within  a  sin- 
gle B factor bin can  be displayed as a histogram, as in Figure 2. 
This  histogram  has  the  form  of a Maxwellian  distribution 
(Chamber & Stroud 1979): 

where P ( A r )  is the  probability  of  obtaining a given value of Ar, 
and a, is the  three-dimensional  standard  deviation  of Ar. 

In order  to work with a Gaussian  distribution  representing  po- 
sitional  variation in one  dimension,  rather  than a Maxwellian 
distribution  representing  the  scalar  positional  variation in three 
dimensions  (Chambers & Stroud, 1979), each  value  of Ar was 
replaced  with its one-dimensional  probability  distribution  for 
Ax. That is, a given value of Ar has a certain probability of hav- 
ing a Ax component with a given value (derived in Appendix 1). 
The  probability  of a specific  value of Ax is: 

* O s A X < A R  
(2) 

0;  A R s  AX.  

0 10 20 30 40 50 

B factor (A2) 

Fig. 1. Scatter plot of the difference in position ( A R )  of an atom in the 
two molecules in the asymmetric unit of the lGPl structure, after su- 
perpositioning, as a function of the average atomic B factor assigned 
to the atom in the two molecules: The vertical bars indicate the  atoms 
with a mean B factor of 12 f 2 A2. 
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0.0 0 1 

Fig. 2. Histogram of the  distribution of A R  values for atoms in the 
lGPl  structure with a mean atom B factor of I2 f 2 A2. The bin size 
is 1/17 of the RMS value of the ARs.  

The generic one-dimensional  axis is denoted  as x ,  which can be 
thought of as  the X axis rotated over all possible orientations. 
Thus,  this  conversion  from  three  dimensions  to  one  dimension 
simultaneously  provides  the  advantage of dealing in a one- 
dimensional  variable where Gaussian (Fig. 3) rather  than Max- 
wellian (Fig. 2) distributions  hold, while avoiding the arbitrariness 
of any given orientation  of  the  coordinate basis  vectors. 

For each  range  of B factor  (e&, 10-14 A' as in Figs.  2 and 
3) ,  a histogram  was  constructed  of  frequency  versus  one- 
dimensional  difference in position  (Fig. 3). The  standard devi- 
ation of the Ar values, ar,  can  be  estimated  as  the  RMS value 
of the Ar. Because a x ,  the one-dimensional standard deviation, 
is  related to  a, by a, = &a,, the abscissa of  the  histogram was 
binned in divisions of  1/17 of the  RMS value of  the Ar values 
at  the given B factor, or roughly 1/10 of  the expected a x .  

A Gaussian  distribution of the  form: 

Fig. 3. Histogram of Ax values obtained from the AR values in Figure 2. 
The dashed line indicates the best fi t  Gaussian curve, where the stan- 
dard deviation is ~ ~ ( 1 2 . 0 ) .  
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was then  fit  to  the  histogram  through  nonlinear,  unweighted 
least-squares  minimization  (Fig. 3). This  extracts  the  true  nor- 
mal  distribution  component  of  the  differences in atomic  posi- 
tions.  The  standard  deviation  of  this  distribution is termed 
u,(B),  i.e.,  the  one-dimensional  standard  deviation  in  atomic 
position  associated with a given B factor.  The scatter plot of AR 
versus B factor  (Fig. 1) is thus  replaced with  a curve of u,(B) 
versus B factor  (Fig. 4). 

Consistent  with  the  hypothesis  that ux ( B )  reflects the  errors 
in the  crystal  structure is the  observation  that  the  extracted  dif- 
ferences diminish  as  the  resolution  increases.  This is true,  for 
example, in the case of azurin (see below), for which two  struc- 
tures, a  medium-resolution and a  high-resolution structure, were 
used. The differences between the  two molecules decreased with 
the addition of the high-resolution data.  Other measures of crys- 
tal structure  accuracy, such  as dihedral angle  quality and energy 
of hydrogen  bonds,  also  improve with  increasing resolution 
(Morris et al., 1992). 

Errors are correlated with atom B factor 
To generate a smooth  dependence of ux ( B )  upon B ,  it was 

fitted to an  exponential  of  the  form 

where a,  b, and c are  the  refinable  parameters  (Fig. 4). This 
functional  form  for  the  dependence  on B was  selected over  the 
parabolic  form previously  used (u,(B) = a + b* B + c*B* 
[Perry et al., 19901) because the  exponential used here is mono- 
tonically increasing, whereas the  second-order  dependence was 
not,  and because the  exponential fit to  the ux ( B )  curves  gener- 
ally resulted in a smaller least-squares value than  the correspond- 
ing parabolic  equation fit to  the  same  curve.  The values of a, 
b, and c (Equation 4) for  each  protein were refined by nonlin- 
ear least-squares  minimization to  data  from all atoms with B fac- 
tors between 0 A’ and 40 A’. A  B factor  cutoff  of 40 A*  was 
imposed because in most cases there were not enough  data points 
( n  < 100) to  obtain  reliable  estimates  of u , ( B )  for  values 

0 5 1  lGPl  

0 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0 10 20 30 40 

8 factor (A3 
Fig. 4. Differences  between  the  two  molecules  in  the  asymmetric  unit 
of  the  lGPl  structure  as a function  of E factor.  The  thin  curve  repre- 
sentso341  values for o,(E) (from E = 6.0 A’ to E = 40.0 A’ in  steps  of 
0.1 A2). The  thick  curve is the  best-fit  three-parameter  exponential 
function  to  these  data  points. 

greater  than 40 A*. This is not a great  limitation, because 90% 
of  the 70,000 atoms used in  the  analysis  had B factors less than 
40 A*. In  some  cases,  proteins  did  not  have  enough  atoms  for 
the  curve  to  extend all the way to  40 A2. In these cases,  the ex- 
ponential  was  fit  to  the  reduced  range  and  the  limitation  on 
range was noted.  In  addition,  any  limitation  on  the  range  for 
very small B factors  was  also  noted  for  each  structure.  The B 
factor  limitations  for  each  structure  are  apparent in Figure 7. 
In this  manner,  each  plot  of a,(B) versus  B factor was repre- 
sented by the  three  parameters a, b, and c. 

Previous correlations have  shown that expected positional er- 
rors should  and  do  increase  with increasing B factor  (Cruick- 
shank, 1949; Chambers & Stroud, 1979;  Bott & Frane, 1990; 
Perry et al., 1990), although  the  current  report is the  first  to use 
the  empirically derived three-parameter  exponential  form: a + 
b*e‘B’c)”’. In  particular,  Cruickshank derived the following for- 
mula for  the one-dimensional standard deviation of uncertainty 
in atomic  position: 

u.r = ~, 
Ahh 

where is the  standard  deviation in the x direction  for  an or- 
thorhombic  space  group, u ( A , )  is the  standard deviation of  the 
first  derivative (with  respect to x) of  the  electron  density in an 
F, map,  and A , ,  is the  second  derivative (with  respect to x)  of 
the  electron  density, or the  curvature,  at  the  atom  center. Be- 
cause  an  atom with a larger B factor will have a smaller  curva- 
ture,  the  Cruickshank  formula  predicts  that  atoms with larger 
B factors will have larger  positional  errors.  Although  no  ana- 
lytic expression was attempted  for this  B factor  dependence,  an 
error curve  generated by the Cruickshank formula  can be fit very 
well by a three-parameter  exponential,  as we use here. 

Correlation of errors wirh measures of model  quality 

The  dependence of errors  on B factor for each  structure is 
contained in the values of a, b, and c for  that  structure.  How- 
ever,  the values  of a, 6 ,  and c are  different  for  each  structure, 
the uh ( B )  curves  are all different (see Fig. 7), and it is appar- 
ent  that a  single exponential  curve  does  not  suffice  for all the 
structures.  Other  factors,  such  as  resolution, which d o  not  af- 
fect the  atomic B factors, d o  affect  the  accuracy  of  the  atomic 
positions. 

In order  to generate a family of exponential  curves, we sought 
a parameter  relating  the  different  curves  obtained  for  the  dif- 
ferent structures.  To  examine  the  dependence of  differences  be- 
tween structures  on  the  quality of the  model,  the value of u, ( B )  
for  each  structure at a  given B factor was plotted versus each 
of 90 different  potential indices of  model  quality.  These included 
such parameters  as resolution, R factor ( R  = I( I F, I - I F, 111 / 
C IF, I), number of independent  reflections,  number  of refined 
atom  positions,  and  functions of  these. For each  index  of  model 
quality,  the  correlation coefficient ( r )  was evaluated  from a lin- 
ear  least-squares fit to  the  plot  to  identify  the  parameters  that 
correlate best. The  functions of most  appropriate  parameters 
were expressed as a  linear  dependence on B factor, described by 
a Slope@) and  an  Intercept(B), which were determined by least- 
squares  refinement  and  are  each  functions  of B factor. 

Due  to  the  limitations  noted  above,  the ux ( B )  versus  B fac- 
tor curves for  all 18 structures exist simultaneously  only in the 
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range 14-31 A’, which accounts  for 64% of  the  atoms  used. 
The index of  quality with the highest average  correlation  coef- 
ficient in this  range is e(p2AToM’REFL), where REFL is the  total 
number  of reflections  used  in refinement,  and  ATOM is the  to- 
tal  number  of  atoms in the  asymmetric  unit  subject  to refine- 
ment  (Fig. 5 ) .  This  index  yielded  an  average  correlation 
coefficient  of 0.89, and  ranged  from  a  maximum of 0.94 at  a 
B  factor  of 14 A* to  a  minimum of 0.76 at a B  factor of 31 A 2 .  
For 18 data  points,  a  correlation coefficient  of 0.6 is statistically 
significant  at  the 99% confidence  limit.  That  is,  a  random col- 
lection  of 18 points  has  only  a 1 Yo chance  of yielding a  correla- 
tion  coefficient  greater  than 0.6. 

In this study,  the  errors in a crystal structure were more closely 
correlated  with  the  ratio  of  the  number  of  atoms  to  the  num- 
ber of reflections  than  to  the  resolution of the  structure (aver- 
age  correlation  coefficient  of 0.79). As  demonstrated in 
Appendix 2, however,  this  ratio is proportional  to  the  cube  of 
the  resolution, multiplied by the  protein  fraction in the unit cell. 
Thus,  trial  of  the  many  different  indicators  permitted  testing 
of more  complex  relationships  or  interrelationships between 
parameters. 

The  dependence of positional  accuracy on the  ratio  ATOM/ 
REFL  can  be  understood in terms  of  the  overdeterminancy of 
the crystal structure refinement, that is, the  ratio of  observations 
to  parameters. In an  unrestrained  crystallographic  refinement, 
the  observations  are  the intensities of independent  reflections 
and  the  free  parameters  are  the x ,  y ,  z positions  and  B  factors 
of the  atoms in the  asymmetric  unit. In macromolecular crys- 
tallography,  the  number  of  atoms involved often  prohibits  com- 
pletely unrestrained  refinement, so restraints and constraints are 
applied.  The  number  of  structure analyses where restraints  have 
been removed is few,  though these structures, like trypsin when 
refined by difference  Fourier  methods  and  without  constraints 
(Chambers & Stroud, 1977), offer  a rich source of data.  These 
data  ultimately  become  built  into  useful  restraints  and  con- 
straints on structure  and  coupling  of  B  factors designed to  im- 
pose expected structural  features.  The  various uses of  these 

5 
E 

0.6 

$ 0.4 

0.2 

0.0 
0.4 0.5 0.6 0.7 0.8 0.9 1.0 

exp(-PATOMIREFL) 

Fig. 5. The values of o , ( B )  (from  the  smooth  curve  approximation) 
for  the 18 structures  in  the  study  at  three  distinct B factors  plotted  as 
a  function-of exp(-ZATOMIREFL) for  each  structure.  Circles, B fac- 
tor = 10 A’; squares, B factor = 20 A’; triangles, B factor = 30 A’. 
Also indicated is the  best-fit  line to the  data  points  at  each B factor. 

restraints and constraints during refinement  of a particular  struc- 
ture  make it impossible to calculate the precise overdeterminancy 
in macromolecular  refinement,  but it is still related to  the  num- 
ber  of reflections  and  the  number  of  atoms.  The  actual  over- 
determinancy will be related  to  the exact number  and  nature of 
the  restraints  and  constraints  employed in the  refinement. 

The  presence of the solvent fraction in the  relationship be- 
tween resolution  and  ATOM/REFL suggests that, given the 
same  protein in two  different  space  groups,  the  one with the 
higher  solvent content would yield the  more  accurate  structure. 
This is because a higher solvent content implies a larger unit cell, 
consequently  a  greater  number  of  reflections  at  a given resolu- 
tion.  In  practice,  however, crystals  with a higher  solvent con- 
tent  often  tend  to  diffract  to  a lower maximum  resolution,  and 
both  factors  enter  into  the  equation.  Thus, use of  the test for 
parameters  that have the highest correlation is designed to re- 
veal occult  interrelationships  such  as these. 

Perhaps surprisingly, the R factor of the  structure did not cor- 
relate significantly with the level of errors observed (average cor- 
relation  coefficient of 0.57, and below 0.60 in all B  factor bins). 
This  could  be  due in part  to  the  different  conventions used for 
reporting R factor.  For  example,  some  crystallographers  apply 
a 20 cutoff,  that is, they may  remove  observations for which the 
condition F/uF > 2.0 is not  met, which will produce  a lower R 
factor than if no cutoff is used. Also, all the structures used were 
final reported  structures,  and  the R factor is most useful in eval- 
uating the progress  of  crystallographic  refinement. Correspond- 
ingly, this implies that  the results obtained in this study  are only 
applicable to  other  structures  that have been completely  refined, 
and  not  structures still in refinement. 

Calculation  of  expected errors correlated with B factor 
Slope(B)  and  lntercept(B)  are derived by linear  least-squares 

analysis.  The  u,(B)  values  for  each  structure  are  three- 
parameter  exponential  functions  (Equation 4) and, as a  result, 
Slope(B)  and  Intercept(B), which are  related  to  the u, ( B )  in a 
linear manner,  can  also be described by three-parameter  expo- 
nential  functions. 

A plot of  the  Slope(B) versus B  factor fits best to  a  three- 
parameter  exponential  curve: 

Slope(B) = k l  + k2*e ‘B’k3) ,   (6)  

where k l  = -0.687,  k2 = -0.00223, and k3 = 6.16. 

ditional  three  parameters: 
Likewise, a plot of Intercept(B) versus B  factor yields an  ad- 

Intercept ( B )  = k 4  + k5 * (7)  

where k 4  = 0.642,  k5 = 0.00852, and k 6  = 7.88. 
Thus,  all  the  information relating the  B  factor of an  atom to 

the  accuracy of its position is contained in these six parameters. 
The  expected  error  at  each  B  factor, tX (B),  for a particular 

protein is then  a  function of the  ratio of ATOM/REFL: 

where  Intercept(B)  and  Slope(B)  are  defined by Equations 6 
and 7.  
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For the analysis that follows, c X ( B )  for a single structure was 
recast  as an exponential  function  of  three  variables: 

as  described in Appendix 3 .  
This gives rise to  a  family of exponential  curves of  expected 

error versus B factor  each  at a different value of ATOM/REFL 
(Fig. 6). Figure 7A-R shows  the  observed  dependence  of  posi- 
tional differences -or "errors"- in structure, ux ( B )  , for  the 18 
structures  along with the  predicted  error  curves, tx ( B ) ,  calcu- 
lated  according  to  the  above  equation. 

Tests of the function in predicting expected "errors '' 

Because the curves were constructed primarily from  the 60% of 
atoms with B factors between 14 and 31 A', the resulting error 
curves were tested to see how well they predicted the differences 
between the  structures used to derive  them. To evaluate how well 
the  function  t,(B,ATOM/REFL)  explained all differences in 
atomic  positions between the  pairs of structures, a Z-score was 
defined  for  each  atom  as: 

where Ax,  Ay, and Az are  the  differences in the  position of an 
atom in the  two molecules  in the  asymmetric unit along  each  of 
the  orthogonal  axes. 

If the  error  curves, c x ( B ) ,  really d o  reflect a  normal  distri- 
bution of differences,  the  distribution  of  Z-scores  should be 
Gaussian with a standard deviation of 1 .O. As shown in Table 2 ,  
13 of  the 18 structures  had an overall  standard  deviation within 
20% of 1 .0, and  only  one  structure (2PFK) deviates  from its 
tx ( B )  curve by more  than 50%. Thus,  the  variation in  posi- 
tional  uncertainty  of  most of the 29,280 atom  pairs in the  study 
is substantially  contained within the six parameters (kl-k6) used 
to  construct t X .  

5 
B 
w x 0.5 

0.0 r 1 I , ,  I , ,  I 
0 10 20 30 

B factor ( 2 )  
40 

Fig. 6 .  Family of ex ( B )  curves.  Each  value  of  ATOM/REFL  yields  a 
distinct  member of this  family. The curves  shown  span  the  range of val- 
ues seen in  this  study.  From  top to  bottom,  the values of ATOMIREFL 
are 1/2, 114, 118, and 1/16, respectively. 

Table 2. Internal control and comparison 
of cX(B) to the Luzzati formula 

~ "_ 
~ 

. ~ ~~~~~ ~ 

SD of 
~ 

( A @ )   ( A @ )  
Structure  Z-score  Luzzati  from ex  

1 THB  0.25 0.12 
2CCY  0.95  0.20  0.14 
4CHA 0.83 - 0.12 
4DFR 0.91 0.15  0.18 
2HHB 1.08 0.18  0.14 
3CYT 0.81 0.20 0.16 
2AZA 1.04 0.15  0.15 
lGDl 0.67  0.18  0.15 
1 AZA 0.98 - 0.20 
l G P l  0.96 - 0.14 
1 HMQ 0.96 - 0.13 
2PKA 1.37 0.20 0. I4 
2PFK  0.42 - 0.31 
I FCB  0.74 - 0.23 
4MDH 1.10 0.225  0.3 I 
4ATC 1.17 - 0.36 
lFCl  0.74 - 0.40 
I HBS 0.90  0.40  0.55 

~ ~~~~ ~ 

1.08 
~-~ ~~~ ~~~ 

Other influences on accuracy of atomic  positions 
extracted from correlation analysis 

Normalized error score 
The  predicted  error  curve,  t,(B,ATOM/REFL)  contains 

contributions  from  atomic B factor  and  the  resolution  of  the 
data. To evaluate  further  atomic  attributes  that might  influence 
positional  accuracy, a normalized error score was defined as  the 
standard deviation of a Gaussian  fit to  the Z-scores of a selected 
subset of atoms divided by the  standard  deviation of a  Gauss- 
ian fit to  the  2-scores  for all the  carbon  atoms (which consti- 
tute  more  than 64% of  the  atoms  evaluated),  e.g., 

N.E.S.(subset) = 
u(Z-score(subset)) 
u(Z-score(carbon)) ' ( 1  1) 

Thus, i f  ex ( B )  correctly  predicts  the  accuracy of a  subset of 
atoms,  the  normalized  error  score  for  that  subset of atoms 
should  be close to 1.0. If the e,(B) estimation is too large or 
too small.  the  N.E.S. will  be less than or greater  than 1.0, 
respectively. 

A  standard deviation for a normalized error score, uNEs(sub- 
set), was calculated by first  evaluating a separate  normalized 
error  score  for each of  the 18 structures  separately, N.E.S.,(sub- 
set),  and  then  taking  the  standard  deviation of these 18 values. 
This  standard  deviation  indicates  how  consistent  a  particular 
normalized error score is over the 18 structures used in the  study. 

The N.E.S. should already account  for errors associated with 
B factor  and  resolution. As  shown  in the  left-hand panel  of Fig- 
ure 8, there is no  variation in N.E.S.  for  atoms  of  different B 
factors, within the  error given by uNES, which confirms  that 
c x ( B )  has  accounted  for variations due  to E factors, even in the 
bins below 14 A' and  above 31 A', which include  atoms  that 
were not used  in constructing e x  ( B ) .  
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Fig. 7. Observed  errors, ux ( E ) ,  and expected  errors, tx ( E ) ,  for each  of  the 18 structures used in  the  study.  Because  the u,(E) 
curves were used to derive  the  empirical  formula,  the  degree to which  the  two  curves in each  figure  match  indicates  how well 
all  the  information  from  all  the  curves  has  been  reduced  to six parameters ( k l L k 6 ) .  The  structures  are  displayed  in  order of res- 
olution of the  structure.  In  each  figure,  the  choppy line is the  standard  deviation  of Ax in  each E factor  bin,  the  thick  solid  line 
is the  three-parameter ux ( E )  curve,  and  the  dashed line is the  curve  calculated for that  structure  from t,(E,ATOM/REFL). Note 
thatordinate of four  figures ( IMDH,  4ATC,  IFCI, and IHBS) goes to 2.4 A,  whereas  the  ordinate  of  the  other 14 goes to 
0.6 A.  (Continues on facing  page.) 

No correlation with atomic  number 
The  second  panel  of  Figure 8 shows  that  there is also little or 

no difference  in N.E.S. due  to  atomic  number.  That is, carbons, 
nitrogens,  and  oxygens  are  all  positioned with equal  accuracy 
on  average.  It is difficult to  draw  any  conclusions  about  sul- 
furs,  because  there  are so few in any given structure  (between 
5 and 14). This is reflected  in the large error bar (uNES) for sul- 
fur in the  central panel of Figure 8. The N.E.S. for  sulfur, how- 
ever,  indicates  that  its  accuracy is close to  that  of  the  other 
atoms. 

In  contrast  to  the results  presented here, however, the  Cruick- 
shank  formula  predicts  that  errors  in  position  are inversely re- 
lated  to  the  number  of  electrons  in  the given atom  type.  This is 
because the  “curvature”  used in the  Cruickshank  equation will 
be  greater  for an  atom with  more  electrons  at  a given B factor. 
The  apparent lack of  a  dependence  on  atomic  number  here is 
probably  due  to  the  restraints  and  constraints  applied  in  mac- 

romolecular  crystallography, which ensures  that  the  accuracy 
of one  atom is highly related  to  the  accuracy of its  covalently 
bound  neighbors (see below). 

Correlation with connectivity of atoms 
The connectivity of an  atom is strongly  correlated with accu- 

racy  of  its position  as  demonstrated in the  third  panel of  Fig- 
ure 8. Atoms  of  the  main  chain  (C, N, Ca, and 0) have lower 
than expected errors (N.E.S. < 1.0). The main-chain atoms have 
lower positional  errors  than  side-chain  atoms  with  three  non- 
hydrogen  neighbors, which  in turn  have lower errors  than  at- 
oms with two non-hydrogen  neighbors. Side-chain atoms of  only 
one  non-hydrogen  neighbor  have  the  most  uncertainty of all, 
with  an N.E.S. 50% greater  than  that  for  main-chain  atoms.  It 
is especially noted  that  this is after B factor-correlated  effects 
have been accounted  for.  Thus,  on  average,  a  side-chain  atom 
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Fig. 7. Continued. 

40 

with a B factor of 15 A 2  has a 50% greater  positional  uncer- 
tainty  than a main-chain  atom with  a B factor of 15 A’. 

The  more  non-hydrogen  neighbors a given atom  has,  the 
lower  its error,  independent  of  the B factor  of  the  atom.  This 
can be seen as  an  extension of relationship between observa- 
tions/parameters  and  overall  accuracy.  The  positions  of neigh- 
boring  atoms  can  be seen as  additional  observations  affecting 
the given atom position. Likewise, the  more neighbors, the fewer 
degrees of freedom, or parameters,  are  available  for  position- 
ing the given atom. 

Discussion 

Comparison with the “Luzzati” formula 

A widely used measure  of  the  positional  accuracy  of  crystal 
structures is the  relationship  of  Luzzati (1952). However,  con- 
structing a “Luzzati  plot”  requires access to  the  original  struc- 
ture  factors (F,’s) and  the  Luzzati  method  assumes  all  atoms 
have  the  same B factor.  The  Luzzati  method  produces a single 
overall  value  for  the  accuracy of a structure, (A%),  which is por- 
trayed  as the average atomic displacement from  the  “true” struc- 

ture.  To  the extent that  atoms have a range  of B factors,  the Luz- 
zati  plot,  because it emphasizes  the  high-resolution  data, 
represents the expected errors of only  the  atoms with the lowest 
B factors in the  structure. 

To calculate  an overall (A%) for a structure  from ex ( B ) ,  in- 
dividual  atomic A q ’ s  were calculated  from  the  relationship: 

A q m p  = eX(B,ATOM/REFL), (12) 

where ARmp is the  most  probable value for A% based  on  the 
atom’s B factor  and  the  value  of  ATOM/REFL  for  the  struc- 
ture  (Appendix 4). 

Ten  of the  structures used  in this  study  had  Luzzati values  re- 
ported  for  them.  For  comparison, in Table 2, a  value for (AR) 
has been calculated from e,(B) for  those 10 structures using all 
atoms with  B factors less than 40 A 2 ,  by our method  (Equation 
9). There is a rough  correspondence between the  values,  with 
a correlation coefficient  of 0.86 (which is statistically  significant 
at  the 99.9% level). However,  most  of  this  correlation is due  to 
IHBS,  the  lowest-resolution  structure in the  study,  because, if 
this  point is omitted,  the  remaining  nine  structures yield a cor- 
relation  coefficient  of  only 0.15. 
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Element Connectivity 

Fig. 8. Normalized error score (N.E.S.) indicates how well c , ( B )  ac- 
counts for different levels of errors  in  different  subgroups of atoms. An 
N.E.S. value below 1.0 implies e , ( B )  overestimates the  errors  in  that 
subgroup;  a  value above 1 .O implies cX ( B )  underestimates  the  errors for 
that subgroup. 

Because the Luzzati method uses the observed structure fac- 
tors, it is useful for evaluating the progress of refinement, which 
e x  ( B )  is not. However, the Luzzati method cannot assign er- 
rors to individual atoms, as e x (  B )  does. In addition, calcula- 
tion of ex ( B )  for  a structure requires only the number of atoms 
and  the  number of reflections used  in refinement, which should 
be provided in any published report of a crystal structure,  and 
our goal is to derive an  error estimate  that is readily accessible 
from  the commonly reported data or data recorded within the 
Protein Data Bank files. 

Use of ex(B) 

The function ex ( B )  can be used to estimate the errors in  refined 
macromolecular crystal structures. Because pairs of structures 
were  used to derive ex ( B ) ,  the function represents the expected 
(one-dimensional) differences between two structures. The ex- 
pected errors in any one structure are then e x  (B)/m. The ex- 
pected random differences between two structures will then be: 

where e,] is ex(B)  for the first structure  and e,2 is e x (  B )  for the 
second structure. e,, and es2 will be different if the ratios, 
ATOM/REFL, are different  for  the two structures. 

The results of such an analysis are presented in Figure 9, for 
the  comparison of two independently solved structures of bo- 
vine trypsin (Chambers & Stroud, 1979). The expected errors 
are, in general, close to  the observed differences between the 
structures, especially for B factors below 20 A’. For B factors 
above 20 A*, the observed differences exceed the predicted er- 
rors. This probably indicates that ex ( B )  underestimates the true 
uncertainty in a crystal structure, because it  was derived from 
pairs of molecules that were solved simultaneously and under 
identical conditions. 

One  important exception occurs when difference F,, - F,, 
Fourier maps are used to determine shifts in position (Cham- 
bers & Stroud, 1977). These differences can be extracted with 

0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 
0 10 20 30 40 

B factor 

Fig. 9. Application of the € , ( E )  curve. The smooth curve  represents 
the  predicted  one-dimensional  standard deviation of the  positional dif- 
ferences  between  two  independently  solved  trypsin  structures.  The  jagged 
curve shows the  observed one-dimensional standard  deviation of the po- 
sitional differences. 

potentially much greater accuracy than our formula suggests for 
either structure alone. Difference in position for  atoms may ap- 
proach -1/10-1/30 of the resolution in A (see, for example, 
Krieger Kay & Stroud, 1974). 

A word  about B factors 

Two assumptions about B values that are inherent to  our anal- 
ysis are worth further consideration: ( I )  that B factors  are ac- 
curate,  and (2) that they are refined in a consistent manner by 
all crystallographers. In the case of macromolecular crystallog- 
raphy, these contentions  are clearly debatable. For example, B 
factors, far more than  the positional parameters (x ,  y ,  and z ) .  
are extremely sensitive to how the observed amplitudes (F,’s) 
are scaled and to the resolution range that was  used in refine- 
ment. In addition, whereas atomic positions are restrained by 
known stereochemistry and van der Waals interactions, atomic 
B factors are typically restrained only minimally, for example, 
through  a  standard deviation linking the B factors of bonded 
atoms. The use of minimal restraints on B factors of bonded at- 
oms is  well justified by highly refined structures where B fac- 
tors were determined for each atom completely independently 
(Chambers & Stroud, 1977). in which  it is observed that B fac- 
tors of neighboring atoms are coupled. Rigid body motions such 
as those of rings that may  oscillate are reflected in the variations 
of individually refined B factors around the rings, such that  a 
predominant zone of anisotropic rigid body motion of the ring 
is suggested by trends of B factors around the ring. This kind 
of evidence validates the use  of some restraints in coupling the 
B factors of neighboring atoms in the  structure. 

If the observed F, data  are “scaled up”  at some point in the 
refinement to correspond to a different fall off in intensity by 
resolution, the apparent B factors will all be decreased (by the 
same A B  amount if the correction is isotropic), and  the  appar- 
ent  error estimates calculated by the procedures outlined here 
will perhaps be falsely low. Such scaling changes should be ap- 
parent from  the original publication of procedures. They can 
also be suspected and queried if the limiting resolution of re- 
corded data is not commensurate with the average B factors 
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listed.  Because  it is usual  to  record,  and  include in refinement, 
all data  to  the highest observable  resolution,  the high-resolution 
limit reflects levels of static  and  dynamic  disorder  that  are evi- 
denced  in  the  crystal  and  in  the  protein  structure.  These  effects 
will also  be reflected  in the B factors, higher B factors when the 
disorder is greater.  Thus,  the E factors in protein  structures d o  
incorporate  many  factors besides the intended harmonic  motion; 
however, each  of these factors  also relates to  the  accuracy of the 
final  reported  structure.  The  approach we have  taken  here  in- 
corporates  the limits of resolution  as a correlate with differences 
in structure,  and so determines  the best overall  aggregate  of  pa- 
rameters  that best account  for observed  differences in structure, 
including  this limit  of resolution  attainable.  However,  the  ob- 
jective  here is to  define expected differences between indepen- 
dent  determinations of a protein  structure  that  should otherwise 
be  identical, in the  present-day  environment  where such adjust- 
ments to  the  data will be  made if they  are  deemed  to  improve 
the  resulting  structure,  at  each  particular  resolution:  the  goal 
is always  the best structure possible with  the best present-day 
presumptions.  The  expression we derived,  by  the way  in which 
it is derived from  protein  structures  that  are chemically identi- 
cal molecules  in identical  solvent  conditions,  presumes a best 
case  scenario.  It  provides a “best  case”  estimate. It can  there- 
fore be useful as  the expected standard deviation in position, and 
hence in defining  what is a  significant  alteration in structure. 

To the  degree  that  restraints  applied  during  refinement  are 
based on previous structures  that were determined without  con- 
straints or restraints being applied,  they serve to  restrain  those 
aspects  of  the new structure  toward  the  consensus  values,  or 
more realistically, toward  the  distribution of presently validated 
values. An  example is the  restraints  applied  to  dihedral  angles, 
that reflect  values observed  from  protein  structures  that were 
unrestrained in this  or  related  parameters.  Applied  restraints 
may  also be based on  other  knowledge or expectation,  known 
more  accurately  than  could be determined simply by consensus 
values from similar X-ray  structures,  such  as  bond  lengths  and 
angles  in amino  acids or other  groups  from small  molecules, or 
spectroscopically  determined  distances.  Thus,  any use of re- 
straints  and  constraints  that  are  applied  during  crystallographic 
refinement will usually be  applied  only if the  overall  structure 
will improve  as a result,  and so they serve to increase the  accu- 
racy of the  structure. Resulting atom  positions  should  be closer 
to  their “true”  median  positions  than  they would be if those ste- 
reochemical  restraints  had  not been applied.  They  provide  an 
improved structure  that is most  consistent with the restraints from 
data  observable  only  to limited resolution, or where  the  num- 
ber of observations per parameter is limited. More  restraints  are 
likely to  be  applied  where  the  data  are  fewer. Because what we 
seek to  define  here is the level of  accuracy  that  can be expected 
with the  application  of  the level of  restraints  most  appropriate 
to  the  particular  limitations of  resolution in the crystallographic 
data, we extracted the  most highly correlated parameters,  taking 
account of the  crystallographers  having  done  the best reason- 
able  refinement consistent with the observed data. We extracted 
the  parameters using an  “artificial intelligence” approach  to ex- 
tracting  those  interrelationships  that  provide  the  most  impor- 
tant  correlates with observed  differences. 

To the  extent  that e X ( B )  could be parameterized in a way 
that  depends  on B factors,  the  assumptions 1 and  2  (above) 
about B factors  are  justified.  The  remaining  discrepancy be- 
tween observed  and  predicted  error levels exhibited  in Figure 7, 

however,  could  be  due  to  the  breakdown  of  the  above  assump- 
tions.  For  example,  for  2PFK  (Fig. 7M), u , ( B )  falls far below 
t ,(B).  However,  the B factors in 2PFK  extend  up  to 100 A’ 
and  have a mean  of  40 A‘-indicating a struggle  with a fairly 
low-resolution  structure,  and u, ( B )  extends  far  to  the right of 
that displayed  in Figure  7M, resembling E ~ ( B )  with B replaced 
by B/2. Thus, our derived  expression is probably best suited to  
those  structures  where  the B factor  distribution resembles that 
observed  for  the  majority of the test  cases, that  is, with most 
atomic B factors  falling  between 10 and 40 A*. The  2PFK 
structure  that is aberrant  could  now be identified  beforehand 
as  atypical  because its mean  and  maximum B factors  differ 
greatly  from  the  other  structures. As another  example,  the  er- 
rors in lHBS  (Fig. 7R) do  not seem to  correlate  significantly 
with B factor.  However,  the B factors in this 3-A  (low) resolu- 
tion  structure  analysis  show little consistency  from molecule to 
molecule  in the  asymmetric  unit,  questioning  the validity of re- 
fining  atomic B factors  at this resolution.  The recently intro- 
duced  concept  of  the  free R factor  as  a test (Briinger, 1992) is 
useful  in determining when atomic B factors  can be refined 
safely. Hence,  the expression we derived will work  optimally for 
structures whose B factor distributions resemble those in the ma- 
jority of the test  cases - namely,  the  majority of atoms  should 
have B factors between about 10 and 40 A’. 

More  complicated expressions could clearly be derived, how- 
ever, we sought  the  most  accurate overall  expression that  could 
readily be applied  to  structures  as  they  are  recorded in the  Pro- 
tein Data  Bank, with the  data  recorded in the  PDB,  and  allow- 
ing for  aspects  of  the  analysis  that  may be obtained  from  the 
original  publication. In the  future it may  become  desirable  to 
record  enough  information  about  the  structure  factors  and 
phases  that  more  direct assessment of the  expected  variations 
in position  of  each  atom  position  are  recorded or can be ex- 
tracted  from  the  PDB files. But even this approach is potentially 
flawed  because the  motions of atoms within a highly coupled 
system such  as  a  protein molecule are  not  isotropic-  as  repre- 
sented by isotropic B factors-as  they  are  almost  uniformly 
treated.  Indeed,  they  are  not even harmonic in anisotropic  mo- 
tions, as  suggested for  example by the  trajectories seen in a  mo- 
lecular mechanics  simulation (Schiffer  et al., 1993). Thus,  the 
treatment as isotropic B factors is often necessary to keep the 
number  of  refinable  parameters within bounds  of  reasonable- 
ness, and  to  keep  the  ratio of the  number of observations per 
parameter  reasonable  (above 3-10). The cost  of  this approxima- 
tion is probably largely seen in the R factors representing  the best 
agreement between observed  and  calculated  structure  factors, 
typically  13-21%  between different  structures, which is  well 
above  the  accuracy  with which the  data  can be recorded. 

Use of  restraints  that serve to  reduce  the  number of param- 
eters is especially justified when the  ratio  of  the  number  of  ob- 
servations  to  parameters is small. All other  things being equal, 
the  ratio  of  number  of  observations per parameter is indepen- 
dent  of size of  the  protein molecule  in protein  crystallography. 
The  number  of  parameters  correlates  one-to-one with the  num- 
ber of amino  acids in one  asymmetric unit  of the  structure.  The 
number of observations  at  a given resolution  goes  up linearly 
with the  unit cell volume,  and  hence  approximately  as  the vol- 
ume  of,  or  number  of,  amino  acids in the  asymmetric  unit  of 
structure. Thus,  the  ratio of observations to  parameters does not 
inherently  change  as  a  consequence of protein size  per se, crys- 
tal  symmetry,  or space group.  However, it does  change with the 
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observed  resolution  of diffraction.  The  number of observations 
depends  on  the  inverse  third  power of resolution  attainable. If  
resolutions  of -2.5-2.0 A are accessible, the  parameters  to  ob- 
servations  ratio becomes more  acceptable.  Increasing  the re- 
straints, or averaging  of  multiple  copies if  they exist in  one 
asymmetric  unit, is a means  of decreasing the  effective  number 
of parameters  to  maintain a reasonable  ratio when the  attain- 
able  resolution is worse.  Thus,  much useful  biological informa- 
tion can be extracted from  structures determined from  data  that 
is only  observable to  limited resolution, by applying  restraints. 

As an  example,  typically,  for a 25-kDa  protein  structure of 
-225 amino  acids, -2,000 heavy atoms  (not  including  hydro- 
gen atoms),  the  number  of  parameters used to describe the struc- 
ture is about  2,000 B factors  (one  for  each  atom,  and fewer if 
restrained)  and,  because of stereochemical  restraints,  approxi- 
mately four to  five positional  parameters  on  average per amino 
acid.  This  can be thought of as c$,$ angles for  each  backbone 
peptide,  and a  value for x,, xz of each side chain.  The  approx- 
imate  total is -2,900  parameters,  depending  somewhat  on  the 
restraints  applied  during  refinement.  This is far  short of the 
8,000  parameters  that  would  be  calculated if each x ,  y ,  z ,  and 
B were independent.  Presuming  that  the  protein  occupies p %  
of  the  unit  cell-a  typical value  being -60% of  a unit cell that 
is -40%  solvent (typical  values for  protein  crystals,  that have 
a spread of - *20%)-  the  number of theoretically  observed ob- 
servations, typically the  number  of recorded independent  inten- 
sities I,,k,, depends  on  the  inverse  cube  of  the  resolution 
(generally recorded in A). Thus,  the  ratio of  observations to  pa- 
rameters becomes a( *a*b*c)/6*2,900 (Resolution)’, -0.18 
at 6 A resolution, 1.45 at 3 A resolution, 2.5 at 2.5 A, 4.9 at 
2 A and - 11.6  at 1.5 A resolution.  Thus,  restraints  that  serve 
to increase this  ratio  above 1,  which is unreliable,  toward - 10 
can  increase  the  accuracy of the  structure. 

Conclusion 

By analysis  of 18 structures with multiple molecules in the asym- 
metric unit, a function  has been  derived that  reproduces  the po- 
sitional  differences  observed between equivalent  atoms in the 
chemically  identical structures. We believe this function, e x  ( B ) ,  
truly represents the  accuracy  of a macromolecular  structure be- 
cause: (1) systemic differences  (crystal  contacts) were  removed 
by using only  normally  distributed  positional  differences; (2) 
the  overall level of error  predicted  for a structure  based  on  ap- 
propriately  averaging c x ( B )  values generates  an  overall  error 
estimate similar to  that by obtained by the  Luzzati or other 
methods;  and (3) the  predicted  errors  decrease  with increasing 
resolution  of  the  analysis. 

We show  here  that c x  ( B )  can be used to predict the expected 
level of errors  in  other  macromolecular  crystal  structures  from 
usually obtainable  information  presented  at  the  end of an  anal- 
ysis, and  thus  can  be used  in evaluating  the reliability of crys- 
tallographic coordinates  atom by atom. Because of the empirical 
nature of this  study, our expressions  for eX(B)  are  validated 
more when interpolating, rather  than extrapolating to conditions 
beyond which our  database  extended.  This  covers  most  usual 
cases,  but  means  that c X  ( B )  is best validated  when  applied to  
structure  analyses between resolution  1.5 A and 3.0 A, and  for 
those  atoms with B factors less than 40 A2. It is clear  that  at- 
oms with B factors  above this will have larger errors,  but  the ex- 
ponential  form used here  may  not  be  as  appropriate in that 

range.  This  function  therefore  provides an extremely good  and 
readily accessible way of evaluating  the significance of any  shift 
or movement of  structure,  for example,  in  response to  the bind- 
ing of ligands or seen in mutational analysis of any protein  struc- 
ture, in comparison with  expected errors in position  for  any 
particular  atoms. A computer  program extracting  these error es- 
timates is obtainable  from  R.M.S. 

Materials and  methods 

Structures 

Eighteen structures  that  contain multiple molecules in the asym- 
metric  unit were found by searching  the  Brookhaven  Protein 
Data Bank  (Bernstein  et al., 1977) (Table 1). They were selected 
such  that in no  case was the  equivalence of structure between 
noncrystallographically  related molecules imposed during refine- 
ment.  However, in  individual  cases, some predisposition toward 
equivalent  structure  had been imposed, usually in  early  stages. 
However,  this is not a weakness,  but  rather a strength in our 
analysis  because  it is weighted against  incorporating  errors of 
interpretation, or standard  errors, in the  consideration  of  what 
we seek,  namely  the  variations  due to  random  errors.  Thus, in 
some cases one or more  of  the  following  constraints were ap- 
plied: the  same  starting  structure was used for  independent mol- 
ecules;  noncrystallographic  symmetry was applied at the earliest 
stages of refinement;  dihedral angles  were  averaged  over the in- 
dependent molecules early in refinement;  the  atomic  positions 
were averaged  early in refinement;  changes to be made  to  one 
molecule were checked against the electron  density maps  for  the 
other  independent molecule(s). These techniques will all tend to  
reduce  systematic errors in  observed positional  differences,  and 
so focus  concern  on  the effective amplitudes of vibration of at- 
oms in the  structure within their  own  potential wells. This ex- 
pectation  bears directly on extraction of true  positional  shifts 
between different regions of  protein  structures  induced,  for ex- 
ample, by binding different ligands or with different  mutations. 

In  preparing  the  structures,  atoms were  excluded if they  had 
no  refined B factor or a low occupancy. Eighty-seven atoms 
were eliminated because  they or their  analogous  atom in the 
other molecule of the  asymmetric unit had a B factor  of  zero. 
Also, for  atoms with multiple  occupancies,  only  the  greater oc- 
cupied site  was  used. These  criteria eliminated 45 atoms.  In  all, 
70,120  atoms were included in the  analysis  representing 28,720 
“multiply  observed”  atoms. For those  structures  that  contain 
four  independent molecules in the  asymmetric unit (IHBS, 
IHMQ, lGD1,  2PFK), six separate  comparisons were per- 
formed  and  then  pooled  and averaged to represent a single data 
point  for  the  structure  of  that  protein. 

Superposition of equivalent  protein  structures 
for  comparison of differences 

Independent molecules in  each  asymmetric  unit were overlapped 
by minimizing the RMS deviation of a set of core Ca’s. The  core 
of ea's was selected by analysis of a difference  distance  matrix 
to identify the largest set of Ca’s that simultaneously fulfills the 
two  criteria  that (1) every C a  in the  core moves less than 0.5 A 
relative to every other C a  in the  core,  and (2) the set is connected 
in a structural sense, with each C a  in the  core being  within 10 A 
of at least one  other C a  in the  core.  The  core so selected  varies 
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from 15 to  70%  of all Ca's in the  protein,  depending  on  the 
overall level of difference  between the  proteins being compared. 
This  algorithm  for  identifying a common  core is coded  in  the 
program  NEWDOME  (Montfort et al., 1990; Perry et al., 1990). 

Correcting rotamers of twofold symmetric  side chains 

The side  chains  of Phe,  Tyr,  Asp,  Glu,  and Arg are twofold sym- 
metric  about  the  last  free  dihedral  angle.  Thus,  labeling of cer- 
tain  atoms in  these  side chains is arbitrary with  respect to  the 
chemistry  of  the  amino acids.2 Therefore,  these  side  chains 
were overlapped  and  the  matching  rotamers  adjusted  to mini- 
mize the  RMS  deviation between structures.  Side  chains of His, 
Asn,  and  Gln were similarly corrected because, crystallograph- 
ically,  these  side chains  can  be  twofold symmetric  unless hydro- 
gen  bonding  geometry is clear.  This  affected 120 residues  of a 
total  of  4,500 in the  analysis.  The  overall  RMS  deviation be- 
tween pairs of structures  was  decreased by as  much  as  0.5% by 
the  adjustment. 
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Appendix 1 

Proof that P(X) = I / R  for  0 < X < R 
The  exact  form  used  here  assumes  only  positive  values  of X .  

This  result  says  that  all  values  of  the X component   f rom a random 
three-dimensional  vector  of  length R are  equally  likely.  Because  this 
result  is  rather  counterintuitive.  the  derivation is presented  below. 

The  probabili ty  of a given  event X ,   P ( X ) ,  is defined  as  the  number 
of  outcomes  with a value  between X a n d  X + 6x divided  by  the  total 
number  of   outcomes.  

Consider a sphere  of  radius R .  P ( X ) d x  is then  that   surface  area  of  
the  sphere  generated  with  an X component  between X a n d  X + dx, 
divided  by  the  total  surface  area  of  the  hemisphere  (because  we  are  only 
interested  in  positive  values  of X). 

The  desired  surface  area  can  be  calculated  from  the  following  integral: 
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where 0 is the  angle  between  the  R  vector  and  the x axis, p is the  angle 
between  the  projection of R  into  the y-z plane,  and  the z axis,  and 
R2 sin OdOdp is the  surface  area  element  in  spherical  coordinates. 

Evaluating  this  double  integral  yields  the  value  2nRdX.  The  surface 
area of a  hemisphere is 2aR2,  so that 

P ( X ) d X  7 = - 
2nRdX dX 
2  xR R >  

or, equivalently 

P ( X )  = -. 1 

R 

Appendix 2 

ATOM/REFL 
The  ratio  ATOM/REFL is related to  the  maximum  resolution  and  the 
protein  fraction  in  the  unit cell. The following  symbols are used: 

P = density  of  protein = 1.3 A3/Da 
A = average  molecular  mass  per  non-hydrogen  atom = 14 Da 
V = volume of unit cell 
a = unit cell length,  defined  as  the  cube root of the cell volume 
ATOM = non-hydrogen  atoms  per  asymmetric  unit 
m = asymmetric  units  per  unit cell 
F,, = protein  fraction in the  unit cell 
a* = reciprocal  unit cell length = l / a  
d = maximum  resolution 
d’ =maximum Is1 = l/d 
N ( h k l )  = number of observations 
REFL = number  of  independent  reflections 

The  number  of  possible  observations is related to  the  volume of the 
sphere in reciprocal  space: 

4 
obs = - 3 a( $y. 

To get the  number of unique  reflections,  divide by 2m.  Also, we can 
replace d* and a* by I/d and I/a, respectively, to get: 

REFL = 4 3 a ( i r / 2 m .  

The  volume  of  the  unit cell is given by: 

V =  (mpA)ATOM/F,,.  (2.3) 

Assuming  a  cubic  lattice, V = a’ .  Thus, we can  rewrite  the  ratio 

ATOM/REFL = (ATOM)(2m) 

as 

- 
4ap(ATOM)mA  2apA - ”‘ ‘ 

Taking p = 1.3  A3/Da  and  A = 14 Da,  this  simplifies  to: 

ATOM/REFL = -% d 3 .  
38  A3 

Taking  an  average  value  of 0.5 for Fp (50% solvent  content) we can 
write: 

ATOM/REFL = ~ 

d3  
76 A 3  

Appendix 3 

Constructing an exponential  curve expression for  (B) 
e,(B,ATOM/REFL) is defined by the  following  equation: 

c,(B,ATOM/REFL) = Intercept(B) + Slope(B)*e(-2*Ar”M’KFF’ j ,  

(8) 

where  Intercept@)  and  Slope(B)  are  defined by Equations  6  and 7. 
At  one specific  value  of ATOM/REFL, e , ( B )  is an exponential 

function of the B factor,  as  are  Intercept(B)  and  Slope(B).  This  depen- 
dence  can be made  explicit  by  recasting e x  ( B )  as: 

( B )  = P I  + p2*e(~413j .  (9) 

Any  three  points  can be fit  exactly by?  three-parameter  exponential. 
Thus,  the values  of c y (  B )  for B = 10 A2,  20 A*, and 30 A’ calculated 
from  Equation  7  uniquely  determine  the  three  parameters, p l ,  p2,  and 
p3,  for  any given value of ATOM/REFL.  Namely: 

p 3  = 10 
€,(20,ATOM/REFL) - t,(lO,ATOM/REFL) 
t,(30,ATOM/REFL) - e,(20,ATOM/REFL) ’ (3.1) 

e(20’,3) - e ( 1 0 / / , 3 )  (3.2) p 2  = 
€,(20,ATOM/REFL) - t,(IO,ATOM/REFL) 

p l  = c,(20,ATOM/REFL)  -p2*e(2”’”3i.  (3.3) 

Appendix 4 

The relationship between AT& and ex 
The following  symbols are  used: 

A(I2 = distance  between  the  observed  position  for  an  atom  and  the 

A4{,,,, = most  probable value for A R ,  given a Maxwellian distribution; 

in atomic  positions  between  two  observations of the  same 
“true”  structure; 

c y  = expected  three-dimensional  standard  deviation  of  the  differ- 
ences in atomic positions between two  observations of the  same 
“true”  structure; 

u,,< = three-dimensional  standard  deviation  of  the  differences in 
atomic  position between the  “true”  structure  and  an  observed 
structure. 

“true”  position  for  that  atom; 

e\ = expected one-dimensional  standard  deviation  of  the differences 

By propagation  of  error, 

e,? = €; + e ;  + e ; ,  (4.1) 

t r  = & e , .  (4.2) 

therefore 

Likewise, by propagation of errors  again, 

€,? = d<+ 43, (4.3) 

so 

= & e x .  (4.4) 

This  three-dimensional  standard  deviation  corresponds  to  the  Maxwell- 
ian  distribution: 

(4.5) 

The  maximum  value  of  this  function yields Acl&,, which is 

A(KOIP = VFUY< . (4.6) 

Therefore, 


